

Z-Arm 1832/Z-Arm XX32

High precision

Repeatability ±0.02mm

Large arm span

J1 axis 160mm J2 axis 160mm

Z-axis customization

0.1-0.5m

Competitive price

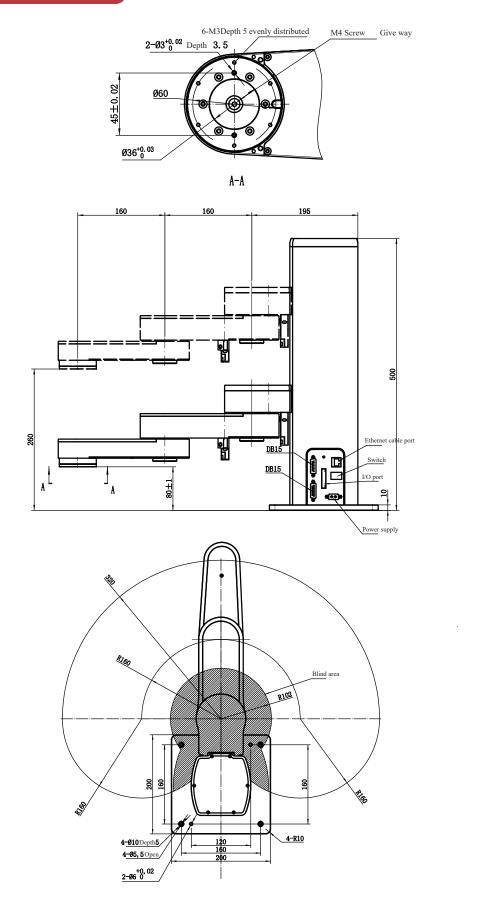
Industrial-level quality Comsumptive price

Model Definition

Z-Arm T1832C0-FXXX-01

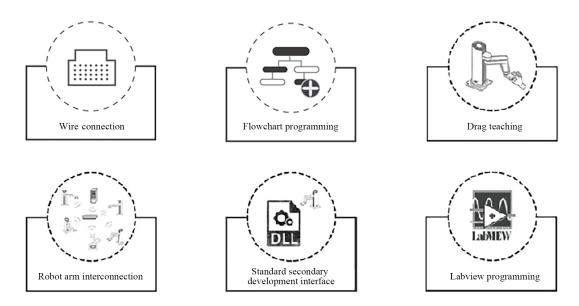
Т	18	32	С	0	FXXX-01
Blank: Four axis F: Five axis T: Three axis S: Six axis	If z-axis stroke is 180, here is 18	If robot arm span is 320, here is 32	Collaborative C Non-collaborative N	0 is silver color 1 is black color	F: Non-standard customized option, if it is a standard product, it is blank XXX: XXX: Customer label number 01: version number

1



Specification Parameter

Z-Arm XX32 Collaborative robot arm	Parameters
1 axis arm length	160mm
1 axis rotation angle	±90°
2 axis arm length	160mm
2 axis rotation angle	±143°
Z axis stroke	Height can be customized
R axis rotation range	±1080°
Linear speed	1017mm/s (payload 0.5kg)
Repeatability	±0.02mm
Standard payload	0.5kg
Maximum payload	1kg
Degree of freedom	4
Power supply	220V/110V50-60HZ adapt to 24VDC peak power 320W
Communication	Ethernet
Expandability	Built-in integrated motion controller provides 24 I/O
Z-axis can be customized in height	0.1m-0.5m
Z-axis dragging teaching	/
Electrical reserved interface	ſ
Compatible HITBOT electric grippers	Z-EFG-8S/Z-EFG-20
Breathing light	1
Second arm range of motion	Standard: ±143°
Optional accessories	/
Use environment	Ambient temperature: 0-55°C Humidity: RH85 (no frost)
I/O port digital input (isolated)	9+3
I/O port digital output (isolated)	9+3
I/O port analog input (4-20mA)	/
I/O port analog output (4-20mA)	/
Robot arm height	500mm
Robot arm weight	180mm stroke net weight 11kg
Base size	200mm*200mm*10mm
Distance between base fixing holes	160mm*160mm with four M5*12 screws
Collision detection	√
Drag teaching	\checkmark


Motion Range and Dimensions

Remark: There is a cable below the robot arm, which is not shown in the figure, please refer to the actual product.

Instructions

Interface Introduction

The Z-Arm 1832 robot arm interface is installed in 2 locations, the back of the robot arm base (defined as A) and the bottom of the last arm(defined as B). The interface panel at A has a power switch interface (J1), 24V power supply interface DB2 (J2), output to user I/O port DB15 (J3), user input I/O port DB15 (J4) and IP address configuration buttons (K5), ethernet port (J6), system input/output port (J7). The interface panel B has a I/O aviation socket for controlling electric grippers.

Interface Diagram and Instructions for Use

1. General diagram of the base interface A (shown in Figure 1)

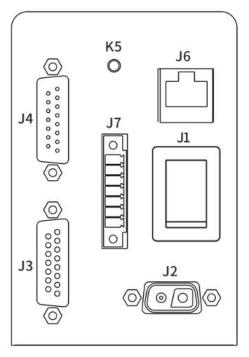


Figure 1

2. Figure 1 interface definition description

- (1) J1 is the power switch interface, which is used to control the power on and off;
- (2) J2 is the power input port, 24V DC voltage source input;
- (3) J3 is the I/O output port, with 9 groups of internal optocoupler isolated NPN outputs;
- (4) J4 is the user I/O input port, with 9 sets of internal optocoupler isolated inputs;
- (5) K5 robot arm IP address configuration button, press and hold the button to power on, the robot arm enters the IP address configuration state;
- (6) J6 is the ethernet port, used for computer communication;
- (7) J7 is the I/O input expansion port, with 3 input and 3 output.

3. The internal circuit design of the J3 and J4 interfaces in Figure 1

(1) J3 interface DB15 male pin definition (shown in Figure 2)

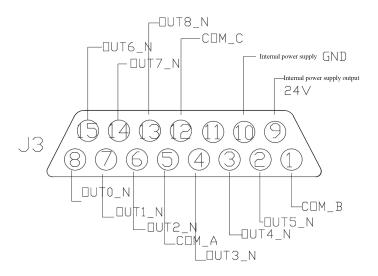


Figure 2

(2) J3 I/O output port internal simplified circuit design (shown in Figure 3)
There are 9 output ports for I/O output, OUT0_N OUT1_N OUT2_N share COM_A, OUT3_N OUT4_N OUT5_N share COM_B, OUT6_N OUT7_N OUT8_N share COM_C, built-in ordinary optocoupler isolator, open-collector output.

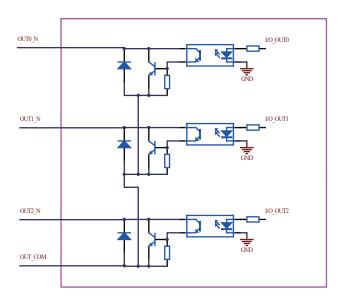


Figure 3

(3) The definition of J4 interface DB15 female (shown in Figure 4)

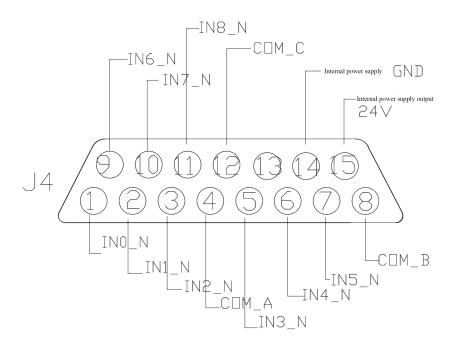


Figure 4

(4) J4 I/O input port internal simplified circuit design (shown in Figure 5)

There are 9 input ports for the robot I/O imput, IN0_N IN1_N IN2_N share COM_A, IN3_N IN4_N IN5_N share COM_B, IN6_N IN7_N IN8_N share COM_C, built-in optocoupler isolator, electrical isolation, strong anti-interference ability, working drive current is recommended at about 10mA, the current is too small to affect the drive performance, and the typical input voltage is 24V.

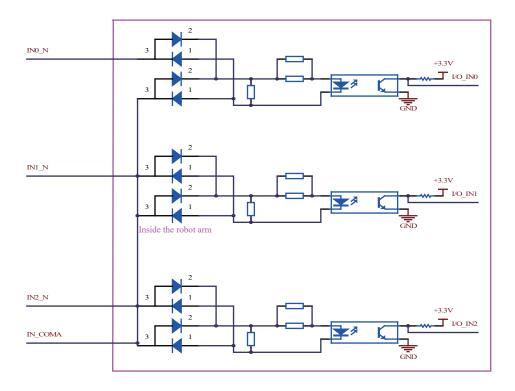


Figure 5

(5) J7 interface male pin definition (shown in Figure 6)

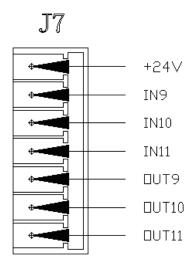


Figure 6

(6) J7 I/O input port internal simplified circuit design

There are 3 input ports of the robot arm I/O input. IN9, IN10 and IN11 share the internal GND. When the +24V terminal is connected to the IN port, the robot has signal output.

(7) J7 I/O outlet internal simplified circuit design

There are 3 outputs of the robot arm I/O input, OUT9 OUT10 OUT11 share the internal GND, NPN type output, when the output is valid, the output voltage is 0V (refer to 24V on the port).

4. B interface control EFG-20 electric gripper diagram, as shown in Figure 7

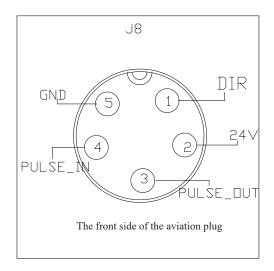


Figure 7

Note:

Pin 1 is the internal output direction control.

Pin 2 is the internal power supply 24V output.

Pin 3 is the internal control pulse output.

Pin 4 is the pulse control input.

Pin 5 is the internal power supply GND.

Precautions

1. Payload inertia

The payload center of gravity and the recommended payload range with the Z axis movement inertia are shown in Figure 8.

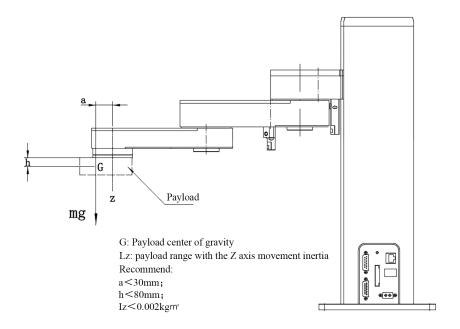


Figure 8 XX32 series payload description

2. Collision force

Trigger force of horizontal joint collision protection: the force of XX32 series is 30N

3. Z-axis external force

The external force of the Z axis shall not exceed 100N

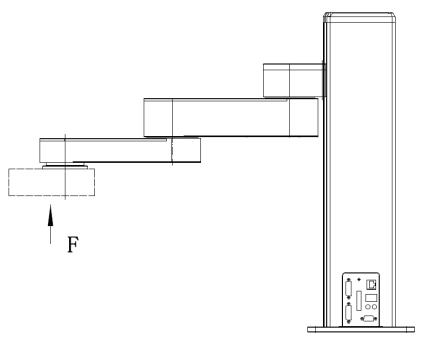


Figure 9

4. Note for installation of customized Z axis, see Figure 10 for details

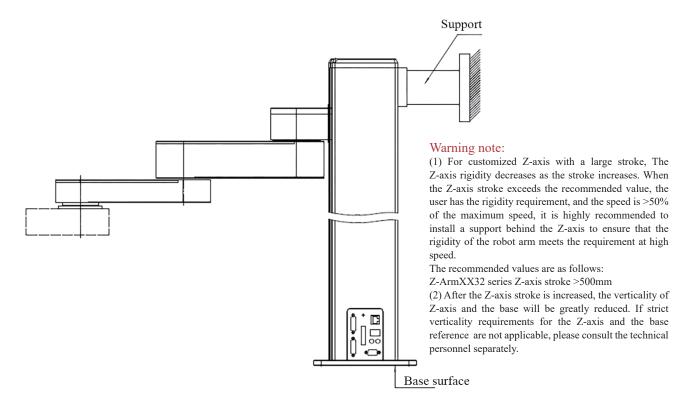


Figure 10

- 5. Power cable hot-plugging forbidden. Reverse warning when the positive and negative poles of the power supply are disconnected.
- 6. Do not press down the horizontal arm when the power is off

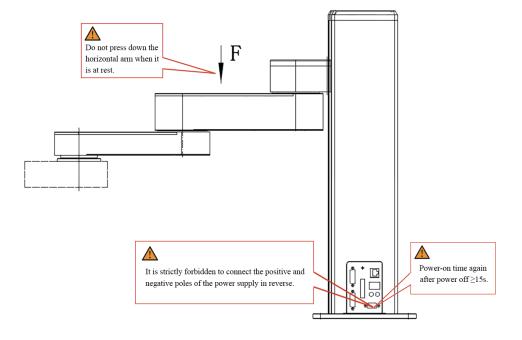


Figure 11

9

DB15 Connector Recommendation

Recommended model: Gold-plated male head with ABS shell YL-SCD-15M

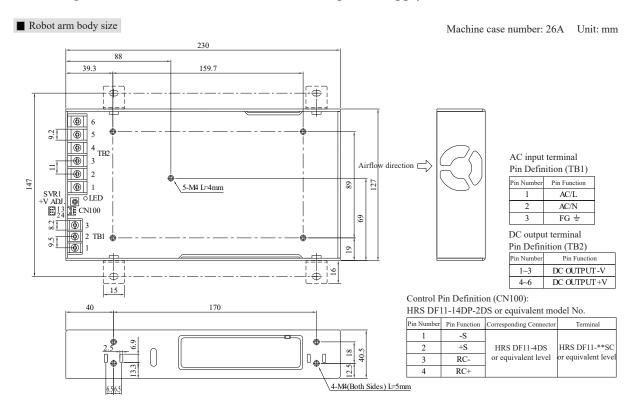
Gold-plated female with ABS shell YL-SCD-15F

Size Description: 55mm*43mm*16mm

(Refer to Figure 12)



Figure 12


Robot Arm Compatible Grippers Table

Robot arm Model No.	Compatible grippers	
XX32	Z-EFG-8S NK/Z-EFG-20 NM NMA	

Power Adapter Installation Size Diagram

XX32 configuration 24V 500W RSP-500-SPEC-CN power supply

Diagram of the External Use Environment of the Robot Arm

Switching power supply